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ABSTRACT

We introduce compositional soft prompting (CSP), a parameter-efficient learn-
ing technique to improve the zero-shot compositionality of large-scale pretrained
vision-language models (VLMs) without the overhead of fine-tuning the entire
model. VLMs can represent arbitrary classes as natural language prompts in their
flexible text encoders but they underperform state-of-the-art methods on compo-
sitional zero-shot benchmark tasks. To improve VLMs, we propose a novel form
of soft prompting. We treat the attributes and objects that are composed to define
classes as learnable tokens of vocabulary and tune them on multiple prompt com-
positions. During inference, we recompose the learned attribute-object vocabulary
in new combinations and show that CSP outperforms the original VLM on bench-
mark datasets by an average of 14.7 percentage points of accuracy. CSP also
achieves new state-of-the-art accuracies on two out of three benchmark datasets,
while only fine-tuning a small number of parameters. Further, we show that
CSP improves generalization to higher-order attribute-attribute-object composi-
tions and combinations of pretrained attributes and fine-tuned objects. The code
is available at https://github.com/BatsResearch/csp.

1 INTRODUCTION

Compositionality is the long-standing goal of artificial intelligence of creating new concepts by
combining existing primitive concepts [5, 8, 14, 19, 29]. The practical advantage of compositionality
for deep neural networks lies in the ability to build new classifiers by combining existing classifiers.
In this work, we consider compositional zero-shot learning, a classification task where the model
learns to predict unseen or novel compositions of the classes [31, 32, 35]. Since we have innumerable
combinations of classes, the problem is made tractable by considering attribute-object compositions
such as old tiger and young tiger where old, young, and tiger are primitive concepts.
Attributes are visual concepts understood by humans and shared across categories. For example, the
attribute old can be used to describe old tiger as well as old cat where tiger and cat
are the object categories.

Existing methods for compositional zero-shot learning typically map attributes and objects to pre-
trained word embeddings and use a pretrained image encoder backbone to jointly align the image
and the attribute-object text representations to learn compositionality [25, 27, 28, 30, 31, 32, 35].
However, the pretraining of the word embeddings and image encoder is disjoint and isolated from
each other, i.e., these methods learn to align image and text representations from scratch. These
task-specific architectures also are limited in flexibility. For example, to adapt these methods to
higher-order compositions with multiple attributes and objects such as small furry cat or
old white tiger, the original architecture needs to be modified. The ability to generalize be-
yond the original training length is a key test for compositionality [14].

In contrast, we propose to build on large-scale pretrained vision-language models (VLMs), which
are trained on massive amounts of aligned images and text [16, 17, 24, 38]. We focus on CLIP
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Figure 1: An overview of compositional zero-shot learning with CSP. We fine-tune the vocabulary
for attributes and objects on the seen classes. Then we compose novel soft prompts to test on the
unseen classes.

[38], a powerful vision-language model pretrained on 400 million image-text pairs. CLIP has two
main components: the image encoder and the text encoder that produce vector representations for
images and text in a multi-modal embedding space. The text encoder accepts a textual input, or a
prompt such as A photo of dog to produce a vector representation for the class dog. Taking
the cosine similarity with all the class prompts and the image, we get a compatibility score for the
classes and pick the one with the highest score. However, our experiments show that CLIP without
any fine-tuning underperforms state-of-the-art methods (Section 5.5).

To improve VLMs for compositional zero-shot learning, we introduce compositional soft prompting
(CSP), a parameter-efficient learning technique that avoids the overhead of fine-tuning the entire
model. Fine-tuning large pre-trained models such as CLIP requires huge amounts of compute that
may be inaccessible to the community at large. This limitation of large pre-trained models has
motivated several soft prompting techniques in both vision and language [21, 36, 45, 50]. These
works tune a single prompt on a downstream supervised task, often in a few-shot setting. For
instance, they typically represent the prompts as A photo of [class] and tune a single prefix
A photo of on the entire dataset. In contrast, CSP is a novel way of soft prompting. We treat
the attributes and objects that are composed to define classes as learnable tokens of vocabulary in
a prompt as A photo of [attribute] [object]. We tune on multiple [attribute] and
[object] prompt compositions, and then we recompose them into new prompts for zero-shot
inference (Figure 1).

Our results show that CSP improves over the zero-shot performance of CLIP. CSP significantly
improves over CLIP across three benchmark datasets by an average accuracy of 17.7 percentage
points in the closed-world setting and 11.7 percentage points in the open-world setting (using the
harmonic mean metric). CSP also achieves new state-of-the-art accuracies on two out of the three
benchmark datasets in both the closed-world and open-world settings. We improve over the previous
state-of-the-art methods on MIT-States by 4.7 points and C-GQA by 3.4 points on the harmonic
mean metric in the closed world setting. In the open-world setting, we show improvement of 1.3
points on MIT-States and 1.2 points on C-GQA on the harmonic mean metric.

In addition to good accuracy, CSP has several other advantages. CSP fine-tunes orders-of-
magnitude fewer parameters than existing work on compositional zero-shot learning since only the
vocabulary is tuned. We show that training CSP with attribute-object compositions improves CLIP’s
performance on attribute-attribute-object compositions without any changes or explicit training. We
also show that CSP improves generalization to compositions of unseen attributes and seen objects.
Prior work on compositional zero-shot learning typically only evaluates unseen compositions of
seen attributes and seen objects.

In summary, we make the following contributions:

1. We introduce compositional soft prompting (CSP), a parameter-efficient learning technique
to improve the compositionality of large-scale vision-language models (VLMs). The at-
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tributes and objects that are composed to define classes are treated as learnable tokens of
vocabulary. Unlike existing work on soft prompting, our prompts are tuned on multiple
prompt compositions and then recomposed into new combinations for zero-shot inference.

2. CSP improves the harmonic-mean accuracy of CLIP by an average of 14.7 percentage
points across three benchmark datasets. We also report new state-of-the-art accuracies for
MIT-States [15] and C-GQA [27] in the closed-world and open-world setting.

3. We conduct additional experiments to analyze CSP. We show that fine-tuning with
attribute-object compositions improves CLIP’s performance on attribute-attribute-object
compositions without any changes or explicit attribute-attribute-object supervision. We
also show that CSP learns to generalize to compositions of pretrained and fine-tuned vo-
cabulary.

2 RELATED WORK

We describe the related work in compositional zero-shot learning and prompting.

2.1 COMPOSITIONAL ZERO-SHOT LEARNING

The growing interest in compositional zero-shot learning has contributed to several architectural
innovations [25, 27, 28, 30, 31, 32, 35]. Early works compose attributes and objects with a transfor-
mation function [30, 32]. Recent work uses separate encoding layers for attributes and objects, and
then combines them with late fusion using a linear layer or a multilayer perceptron [35]. The most
successful methods represent the attribute and object relationship in a graph and learn their compo-
sitions via graph convolutional networks [18, 28, 31, 39, 47]. However, prior work learns to align
the image and the attribute-object representations in the multi-modal embedding space from scratch.
Instead, we build on CLIP, a vision-language model pretrained on image-text pairs. Recently, Rade-
nović et. al. [37] pretrain an attribute-object model with large amounts of weakly labeled data, but
their model is not publicly available.

Compositional zero-shot learning is also closely related to the broader goal of compositionality in
artificial intelligence [5, 8, 14, 19, 29]. For more details, refer to [14]. Lastly, the compositional
zero-shot learning task is a form of zero-shot learning [7, 48] where the classes are described us-
ing attribute-object pairs. Notable works in zero-shot learning include object classification [20],
semantic segmentation [22], video action-recogntion[9], and more [46].

2.2 PROMPTING

Prompting is a recent focus in the vision and language communities that has shown benefits in zero-
shot and few-shot performance on a wide range of tasks [1, 2, 3, 21, 38, 36, 40, 45, 50]. Discrete
prompts are typically hand-written text input that provide guidelines to large pre-trained models
such as CLIP, GPT-3 [3], etc. for inference without updating the model parameters. While manually
engineering prompts can help achieve better performance, it is often time-consuming and impractical
to find the best prompt.

Soft prompting is an alternative to discrete prompts, where a part of the prompt is learned by back-
propagating without fine-tuning the entire model [21, 26, 45, 50]. Several works using soft prompts
show improved downstream performance compared to hand-crafted prompts [21, 23, 36, 41, 45, 50].
In all these works, soft prompts are a single input for the entire task. In contrast, we learn multiple
prompt compositions for compositional zero-shot learning. We recompose them in new combina-
tions to represent unseen classes for zero-shot inference. We show in Section 5.5 that traditional soft
prompting can also improve CLIP on compositional zero-shot learning, but generally not as much
as compositional soft prompting.

3 PRELIMINARIES

In this section, we formally introduce compositional zero shot-learning and large-scale pretrained
vision-language models (VLMs). In particular, we describe the architecture of CLIP and how to use
it for compositional zero-shot learning.
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Figure 2: Comparison of the vocabulary composition process for prompting CLIP in a traditional
zero-shot setting and CSP in a compositional zero-shot setting.

3.1 PROBLEM SETUP

Here we formally define the task of compositional zero-shot learning. Let A = {a0, a1, ..., an} be
the set of possible attributes and O = {o0, o1, ..., om} be the set of possible object categories. Let the
label space Y be the Cartesian product of the attribute set and the object category set, Y = A×O. We
are given two disjoint label subsets such that Yseen ⊂ Y, Yunseen ⊂ Y, and Yseen ∩ Yunseen = ∅
where Yseen and Yunseen are the set of the seen and unseen classes. At training time, we are given
examples Sseen = {(x1, y1), ..., (xn, yn)} to learn some discriminative model f : X→ Yseen.

During inference, we want the model to predict both seen and unseen classes in the test set, i.e.,
f : X→ Ytest . In the closed-world evaluation, the test set is defined as Ytest = Yseen ∪ Yunseen.
In the open-world evaluation, the model has to predict all possible permutations of the attribute-
object compositions, i.e., Ytest = Y and Yunseen = Y − Yseen. For more details, see Section
5.2.

3.2 CLIP FOR COMPOSITIONAL ZERO-SHOT INFERENCE

VLMs have several variants depending on the task [10, 42, 43, 44]. In our experiments, we use
Contrastive Language-Image Pre-Training (CLIP) [38]. CLIP is a large-scale vision-language model
pretrained using approximately 400M text-image pairs sourced from the internet with a contrastive
learning objective. The CLIP architecture has two key components: the image encoder and the text
encoder. The image encoder is either a convolutional neural network [11] or vision transformers
(ViTs) [6] The text encoder consists of multiple transformer encoder layers. Both the components
are trained jointly by optimizing the contrastive loss aligning images with their associated captions.

To use CLIP for zero-shot inference, the classes are transformed into natural language prompts
such as A photo of [class] (Figure 2, left). The prompts are passed through the tokenizer
to get tokens for each word in the prompt. Next, the embedding function maps the tokens to the
vocabulary. Then, they are passed through the text encoder to compute the text representations.
Similarly, the representation of a query image comes from the image encoder. We then take the
cosine similarities between the query image representation and the text representations to get the
final prediction.

Formally, let VLMT be the pretrained text encoder and VLMV be the pretrained image encoder in
the vision-language model. Consider some image x with label set Y where |Y| = m. For each label
yj ∈ Y, we have a tokenized prompt ti. The tokenized prompt is passed through the embedding
function ξ(.) to map the tokens to the their vocabulary.

Finally, we compute the inference probability as follows:

xv =
VLMV (x)

||VLMV (x)||
ti =

VLMT (ξ(ti))

||VLMT (ξ(ta,o))||
(1)

p

(
y = i

x

)
=

exp (xv · ti/τ)∑m
j=1 exp (xv · tj/τ)

(2)

where xv is the normalized image representation, ti is the normalized text representation, and τ is a
temperature parameter.
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Figure 3: Training pipeline for CSP. The prompt with the attribute and object vocabulary is passed
through the text encoder to get the text representation. Similarly, the example is passed through the
image encoder for the image representation. Next, we take the cosine similarity for all the prompts
with the image and compute the cross entropy loss. Finally, we backpropagate the loss through the
text encoder and update the attribute and object vocabulary weights.

We can easily adapt CLIP to compositional zero-shot learning by changing the prompt style. Instead
of using the class prompt format a photo of [class], we use a photo of [attribute] [ob
ject] the candidate compositional classes. The change in prompt format allows us to represent pair
of attribute and objects such as a photo of young cat in the text encoder without any changes.
However, in Section 5.5, we see that this naive application of CLIP underperforms state-of-the-art
methods on compositional zero-shot learning benchmark datasets.

4 COMPOSITIONAL SOFT PROMPTING

In this section, we introduce CSP, a parameter-efficient learning technique for fine-tuning large pre-
trained models for better compositionality. We describe CSP, its training and inference procedures,
and how to apply it in open-world evaluations. The goal of CSP is to improve VLMs such as CLIP
on tasks that require composing concepts in novel ways. In Section 5.5, we show that CLIP does
not perform well on compositional zero-shot learning benchmarks as state-of-the-art-methods. This
is perhaps related to the fine-grained supervision on attributes and objects available in these bench-
marks, which were likely not present when CLIP was pretrained on data crawled from the Web. To
combine the benefits of CLIP’s pretraining and flexible architecture with the additional supervision
for compositional zero-shot learning, it would be ideal to fine-tune the model. However, fine-tuning
CLIP requires huge amounts of compute that may be inaccessible to the community at large.

To that end, we introduce CSP, a parameter-efficient learning technique to improve the composi-
tionality of a large-scale pretrained vision language model without the overhead of fine-tuning the
model. CSP treats the attributes and objects that are composed to define classes as learnable tokens
of vocabulary and tune them on multiple prompt compositions. We tune multiple prompt compo-
sitions on the labeled dataset with attribute and object compositions as described in Section 3.1.
Training and inference with CSP is very simple as we only need to swap the vocabulary of the at-
tributes and objects for any desired composition in the prompt (Figure 2, right). As a result, our
method tunes only |A ∪O| × d parameters where d is the dimension of the vocabulary embedding.
This is a novel form of soft prompting, because prior work [12, 21, 36] has only tuned a single
prompt prefix, whereas we composed learned prompt tokens in new ways at test time.

4.1 TRAINING

Figure 3 shows the overall learning process for CSP. We train the composed soft prompts by fine-
tuning the attribute and object vocabulary on the training dataset. First, we initialize the learnable
vocabulary θ = [θA;θO] where θ ∈ R|A∪O|×d. We initialize θ with pretrained embeddings from
CLIP. Next, we construct a prompt with the attribute and object composition, tokenize, and map
them to the vocabulary:

ξ(ta,o) = {x0,x1, . . . ,xp,xa,xo} (3)

where xi ∈ Rd has two parts: {x0 . . .xp} is the prefix context and the xa and xo is the attribute
and object vocabulary for the composition (a, o). The prompt format in our work is a photo of
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[attribute] [object] where a photo of is the prefix context. We replace the pretrained
attribute and object vocabulary with our learnable attribute and object embeddings in prompt to get
a photo of [attribute] [object] as follows:

ψCSP(ta,o) = ξCSP(ξ(ta,o)) = {x0,x1, . . . ,xp,θa,θo} (4)

where ξCSP is the embedding function to replace pretrained vocabulary with learnable parameters
θa and θo for the attribute and the object in the prompt. For some image x ∈ X and attribute-object
pair (a, o), we get the image and text representations:

xv =
VLMV (x)

||VLMV (x)||
ta,o =

VLMT (ψCSP(ta,o))

||VLMT (ψCSP(ta,o))||
(5)

Then, we compute the class probability p
(
y=(a,o)
x;θ

)
as follows:

p

(
y = (a, o)

x;θ

)
=

exp (xv · ta,o/τ)∑
(â,ô)∈Yseen

exp (xv · tâ,ô/τ)
(6)

Finally, we learn the parameters by minimizing the cross entropy loss on the training dataset:

L = − 1

|S|
∑

(x,y)∈S

log p

(
y = (a, o)

x;θ

)
+ λ||θ|| (7)

where λ is the weight decay.

4.2 INFERENCE

During inference, we recompose the fine-tuned attribute and object vocabulary in the prompt. We
compose the candidate prompts with the tuned θ with the (attribute, object) pairs in the same way
during training. In both closed-world and open-world settings, we only replace attribute and objects
with the fine-tuned parameters in the prompt. Finally, we calculate the most likely attribute and
object pair as follows:

ŷ = argmax
y∈Ytest

p

(
y = (a, o)

x;θ

)
(8)

We include the pseudocode for inference in Appendix A.

4.3 FEASIBILITY CALIBRATION FOR OPEN-WORLD SETTING

The open-world setting is particularly challenging as the label space contains all possible permuta-
tions of attributes and objects in the dataset. For instance, the label space contains feasible compo-
sitions such as young cat and eroded cliff and infeasible compositions such as eroded
cat. The model must output the correct class while ignoring the infeasible compositions. Existing
work shows a significant drop in model performance from the closed-world setting to the open-world
setting [27, 28].

Feasibility calibration aims to filter out infeasible compositions that might be present in the open-
world setting.

To filter out infeasible compositions, we follow the post-training calibration from [28]. They con-
jecture that similar objects share similar attributes while dissimilar objects are unlikely to share
attributes. For example, cat and dog can share the attribute old but cat and cliff do not share
the attribute eroded.

We calculate the feasibility compositions for the composition (a, o) by computing the relationships
between the objects and the attributes. First, we find the similarities between the objects:

ρo(a, o) = max
ô∈Oseen

φ(o) · φ(ô)
||φ(o)|| ||φ(ô)||

(9)

where ρo(.) is the similarity between the object owith other objects ô and φ(.) is an embedding func-
tion that maps attributes to pretrained embedding. We compute similarities between the attributes in
the same way.
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Composition Train Validation Test

Dataset |A| |O| |A×O| |Yseen| |X| |Yseen| |Yunseen| |X| |Yseen| |Yunseen| |X|
MIT-States [15] 115 245 28175 1262 30338 300 300 10420 400 400 12995
UT-Zappos [49] 16 12 192 83 22998 15 15 3214 18 18 2914
C-GQA [27] 413 674 278362 5592 26920 1252 1040 7280 888 923 5098

Table 1: Summary statistics of the datasets used in our experiments.

Next, we combine the two similarities with a pooling function. In our case, we use mean pooling µ:

ρ(a, o) = µ(ρo(a, o), ρa(a, o)) (10)
where ρ(a, o) is the feasbility score for the composition (a, o). Finally, we filter out infeasible
compositions by considering compositions above a threshold T calibrated on the validation set to
get our final prediction:

ŷ = argmax
y∈Ytest, ρ(a,o)>T

p

(
y = (a, o)

x;θ

)
(11)

5 EXPERIMENTAL EVALUATION

In this section, we describe our experiments with CSP . We include the datasets, evaluation met-
rics, training details, and baselines for our experiments. Then, we compare CSP to state-of-the-art
methods in the closed-world and open-world settings of compositional zero-shot learning. We in-
clude qualitative results for zero-shot image-text retrieval to compare CSP and CLIP. Finally, we
demonstrate that CSP can generalize beyond these benchmarks to two modified settings: attribute-
attribute-object composition and inference with unseen attributes. The code for our experiments has
been released.1

5.1 DATASET

We experiment with three real-world attribute-object composition datasets: MIT-states [15], UT-
Zappos [49], and C-GQA [31]. Table 1 summarizies the statistics of the datasets. MIT-states con-
tains images of naturally occurring objects where each object is described by an adjective. UT-
Zappos contains images of shoes paired with fine-grained states. For this dataset, we use the split
suggested by Purushwalkam et. al. [35]. C-GQA, a newly introduced dataset derived from the Stan-
ford GQA dataset [13], contains images of objects paired with states.

5.2 BENCHMARK EVALUATION

We follow the closed-world and the open-world evaluation protocols to test our models. In the
closed-world setting, the seen and the unseen splits are defined in the dataset. In the open-world
setting, the model predicts all possible attribute-object permutations present in the dataset.

Following prior work [27], we report the performance in the generalized zero-shot learning for both
the closed-world and the open-world settings. In generalized zero-shot learning, we evaluate both
the seen and unseen classes in test set. Several works [4, 39] have noted that zero-shot models are
biased towards the seen classes even in the presence of unseen classes. To account for the bias, we
add a scalar bias to the unseen classes. Next, we vary the bias from −∞ to +∞ such we get a curve
indicating the seen accuracy on the x-axis and unseen accuracy on the y-axis. Following prior work,
we report the area under the curve (AUC) and select the operating point with the best harmonic mean
(H) between the seen and unseen accuracy. We also report the best seen accuracy (S) when bias is
−∞ and the best unseen accuracy (U) when the bias is +∞.

5.3 TRAINING DETAILS

We implement CSP with a pretrained CLIP model in PyTorch [33]. CLIP is a large-scale vision-
language model used for zero-shot inference. We use the CLIP model ViT-L/14 which is the largest

1https://github.com/BatsResearch/csp
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MIT-States UT-Zappos CGQA

Method S U H AUC S U H AUC S U H AUC

AoP[32] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
LE+ [30] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8
TMN[35] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1
SymNet[25] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1
CompCos [27] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 11.2 12.4 2.6
ProtoProp [39] - - - - 62.1 65.5 50.2 34.7 - - - -
CGE [31] 32.8 28.0 21.4 6.5 64.5 71.5 60.5 33.5 33.5 15.5 16.0 4.2
Co-CGE [28] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.5

CLIP [38] 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
COOP [50] 36.7 49.2 31.6 15.1 62.9 62.3 45.5 31.3 20.9 25.9 17.1 4.4

CSP 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2

Table 2: Closed world results on MIT-States, UT-Zappos, and C-GQA. For COOP and CSP, we
report the average performance of the models on 5 random seeds. See Appendix C for full results
with standard errors. The results for AoP, LE+, TMN, SymNet, CompCos, CGE, and Co-CGE are
obtained from [28] and ProtoProp from [39].

available model in our experiments.2 Nonetheless, our method is agnostic to the choice of CLIP
architecture. The pretrained CLIP ViT-L/14 model has a vision transformer (ViT) as the image
encoder and a transformer as the text encoder. The input the text encoder is a prompt of the form a
photo of [attribute] [object]. CLIP tokenizes attributes and objects like Nubuck, Faux
Fur, etc. as multiple tokens. We simply average the token representations of multiple subwords to
get a single representation for the attribute or object.

We train CSP by minimizing the cross entropy loss with the Adam optimizer over the seen split in
the dataset for 20 epochs. We use a single NVIDIA RTX 3090 GPU and a single NVIDIA V100
card depending on their availability to train all our models. For each dataset, we choose the best
hyperparameters based on the performance on the validation split. For more details, refer to the
Appendix B.

During inference, we recombine the fine-tuned attribute and object vocabulary for represent the
unseen classes. Following prior work, we compute feasibility calibration using GloVe embeddings
[34] and filter out the infeasible attribute-object compositions based on the performance on the
validation split. We report our results on the best performing epoch across all seeds on the validation
data.

5.4 BASELINES

We compare CSP to the existing compositional zero-shot learning methods [25, 28, 27, 32, 31, 35,
39] and CLIP-based methods [38, 50]. We consider the following compositional zero-shot learning
methods: AoP [32], LE+ [30], TMN [35], SymNet [25], CompCos [27], CGE [31], and Co-CGE
[28]. We also consider ProtoProp [39] in the closed-world setting. Apart from these task-specific
methods, we compare CSP to pretrained CLIP [38] and COOP [50]. COOP is a soft-prompting
method that learns the context with limited labeled examples in a few-shot setting. We adapt COOP
for compositional zero-shot learning task and learn the context as vocabulary. For fair comparison,
we use the same prompt format as CSP for both CLIP and COOP experiments. Finally, in the open-
world setting, we apply feasibility calibration to CLIP and COOP predictions to filter out infeasible
compositions.

5.5 BENCHMARK RESULTS

Our results in Table 2 show that CSP sets the new state-of-the-art on MIT-States and C-GQA
datasets. CSP significantly improves over CLIP on all datasets in the closed-world setting. We out-
perform CLIP in the best harmonic mean by 10.2 points on MIT-states, 31.0 point on UT-Zappos,
and 11.9 points on C-GQA. Additionally, we show that CSP beats COOP, a soft-prompting method,

2https://github.com/openai/CLIP/blob/main/model-card.md
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MIT-States UT-Zappos CGQA

Method S U H AUC S U H AUC S U H AUC

AoP[32] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - -
LE+ [30] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08
TMN[35] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -
SymNet[25] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CompCos [27] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CGE [31] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47
Co-CGECW [28] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.53
Co-CGEopen [28] 30.3 11.2 10.7 2.3 61.2 45.8 40.8 23.3 32.1 3.0 4.8 0.78

CLIP [38] 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.27
COOP [50] 36.8 16.5 16.1 4.7 61.8 39.3 35.6 19.5 20.9 4.5 5.7 0.73

CSP 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.20

Table 3: Open world results on MIT-States, UT-Zappos, and C-GQA. For COOP and CSP, we
report the average performance of the models on 5 random seeds. See Appendix C for full results
with standard errors. The results for AoP, LE+, TMN, SymNet, CompCos, CGE, and Co-CGE are
obtained from [28].

Figure 4: Qualitative comparison for image to text retrieval between CSP and CLIP on CGQA.
Selected samples with concepts correctly identified and top-5 retrieval results by CSP are shown.

in the best harmonic mean by 4.7 points on MIT-States, 1.1 points on UT-Zappos, and 3.4 points
on C-GQA. Finally, CSP improves over existing compositional zero-shot learning method by 14.9
points on MIT-states and 4.5 points on C-GQA on the harmonic mean metric.

Table 3 shows that CSP reports the new state-of-the-art on MIT-States and C-GQA datasets in the
open-world setting. Our results show that CSP improves over CLIP by 4.6 points on MIT-States,
27.7 points on UT-Zappos, and 2.9 points on C-GQA in the harmonic mean metric. We outperform
COOP on MIT-States by 1.3 points, UT-Zappos by 3.3 points, and C-GQA by 1.2 points on the best
harmonic mean metric. We improve over the existing compositional zero-shot learning methods on
MIT-States by 2.8 points and C-GQA by 2.5 points on the harmonic mean metric. Finally, improving
the feasibility calibration could further reduce the gap in performance between closed-world setting
and the open-world setting. We also conduct experiments with different backbones and the trend is
consistent. We report the results in Appendix D.

We qualitatively evaluate the effectiveness of CSP in compositional zero-shot image to text retrieval
tasks. Selected samples from CGQA in Figure 4 show that fine-tuning the vocabulary enables CSP
to better identify composed concepts compared to CLIP. We include more qualitative comparisions
in Appendix E.
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Figure 5: Results of CSP and CLIP with different fractions of pretrained and fine-tuned vocabulary.
In each fraction, we report the average performance of CLIP and CSP on 5 random attribute splits.

5.6 GENERALIZATION TO HIGHER-ORDER COMPOSITIONS

To test the additional flexibility afforded by VLMs, we test if training CSP with attribute-object
compositions can generalize to higher-order compositions such as attribute-attribute-object compo-
sitions. We annotate a novel challenge dataset: AAO-MIT-States, a subset derived from the MIT-
States dataset. In this dataset, we annotate the images in the test split of the MIT-States dataset with
an additional attribute, to get an attribute-attribute-object pair as the class label. More details on the
annotation are included in Appendix F.

Model Accuracy

CLIP 62.7
CSP 72.7 ± 0.5

Table 4: Unseen accu-
racy on 5 random seeds
with standard error.

We compare CLIP and CSP to classify images with attribute-attribute-
object classes and report the accuracy. Since these class compositions are
not present during training, we treat them as unseen classes and calculate
the unseen accuracy. We use the same best performing models for CSP
from MIT-States and run inference on the challenge dataset.

Table 4 shows that CSP improves over CLIP by an average 10 per-
centage points on unseen accuracy and generalizes to attribute-attribute-
object compositions without any modifications or training. The results
demonstrate that CSP improves the compositionality of CLIP’s vocabu-
lary, even in ways that were not explicitly supervised.

5.7 GENERALIZATION TO MIXED PRETRAINED AND FINE-TUNED VOCABULARY

The further test the additional flexibility afforded by VLMs, we also evaluate CSP on compositional
zero-shot learning with a mixture of pretrained and fine-tuned vocabulary. This evaluation stems
from the practical need to combine new unseen attributes with fine-tuned vocabulary. Evaluating in
this setting will allow us to assess whether the benefits of CSP extend to classes including vocabulary
not seen during fine-tuning. This setup goes beyond the above benchmarks, which include unseen
combinations of attributes and objects, but all attributes and objects are seen during training. Now,
we include completely unseen attributes.

We apply CSP on UT-Zappos with different fractions of attributes as seen attributes. We randomly
select 25%, 50%, 75%, and 100% of the attributes and all the objects from the training set. Then,

10



we remove from the seen classes the attribute-object pairs that include an unseen attribute. Finally,
we train the on the remaining seen attribute-object pairs with five random seed values.

For each split of the seen and unseen attributes, we evaluate CSP by dividing the classes into three
buckets: (1) unseen attribute + seen object pairs, (2) seen (i.e., fine-tuned) attribute + seen object
pairs in unseen combinations, and (3) seen attribute + seen object pairs in seen combinations. In
this evaluation, we refer to the classes in the first and second buckets as the unseen classes and those
in the third bucket as the seen classes. This evaluation is more general than typical CZSL settings,
which only evaluate on classes in the second and third buckets. Similar to our evaluation in Section
5.2, we add a scalar bias to the unseen classes and vary the bias from−∞ to +∞. As in other CZSL
evaluations, we select the bias that maximizes the harmonic mean between accuracy on the unseen
and seen classes. We then report accuracy on classes in each of the three buckets. To contextualize
the performance of CSP, we report the accuracy of CLIP on the unseen attribute + seen object pairs.

Our results in Figure 5 show that the performance on unseen attribute + seen object pairs improves
with CSP and sufficient training pairs. Initially, the performance of CLIP and CSP are comparable
but by providing more combinations of supervision for the objects CSP significantly outperforms
CLIP on the unseen attribute + seen object evaluation bucket. These results demonstrate that the
fine-tuned vocabulary of CSP can improve the compositional zero-shot performance of pretrained
vocabulary.

6 CONCLUSION

We present a new style of soft-prompting, CSP, for compositional zero-shot learning. We show
that learning composable components of classes via soft prompting can improve downstream com-
positional zero-shot performance with a small number of parameters. We also demonstrate the
importance of a rich and flexible textual encoder in generalizing to higher-order compositions and
mixtures of seen and unseen vocabulary.

Authors’ Note. The first two authors contributed equally. Co-first authors can prioritize their names
when adding this paper’s reference to their resumes.

ACKNOWLEDGMENTS

We thank Andrew Delworth and Elise Carman for helping us annotate the AAO-MIT-States dataset.
We appreciate the comments and advice from Cristina Menghini, Wasu Piriyakulkij and Zheng-Xin
Yong on our drafts. This material is based on research sponsored by Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory (AFRL) under agreement number
FA8750-19-2-1006. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory (AFRL) or the U.S. Government. We
gratefully acknowledge support from Google and Cisco. Disclosure: Stephen Bach is an advisor to
Snorkel AI, a company that provides software and services for weakly supervised machine learning.

REFERENCES

[1] S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel, N. V. Nayak, A. Sharma, T. Kim, M. S.
Bari, T. Fevry, Z. Alyafeai, M. Dey, A. Santilli, Z. Sun, S. Ben-David, C. Xu, G. Chhablani,
H. Wang, J. A. Fries, M. S. Al-shaibani, S. Sharma, U. Thakker, K. Almubarak, X. Tang,
D. Radev, M. T.-J. Jiang, and A. M. Rush. PromptSource: An integrated development en-
vironment and repository for natural language prompts. In Meeting of the Association for
Computational Linguistics (ACL) Demonstration, 2022.

[2] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. S.
Chatterji, A. S. Chen, K. Creel, J. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Dur-
mus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale, L. E. Gillespie,

11



K. Goel, N. D. Goodman, S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E.
Ho, J. Hong, K. Hsu, J. Huang, T. F. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti,
G. Keeling, F. Khani, O. Khattab, P. W. Koh, M. S. Krass, R. Krishna, R. Kuditipudi, A. Ku-
mar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, I. Levent, X. L. Li, X. Li, T. Ma, A. Malik, C. D.
Manning, S. P. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan,
B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan, J. F. Nyarko, G. Ogut, L. Orr, I. Papadim-
itriou, J. S. Park, C. Piech, E. Portelance, C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong,
Y. H. Roohani, C. Ruiz, J. Ryan, C. R’e, D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. P.
Srinivasan, A. Tamkin, R. Taori, A. W. Thomas, F. Tramèr, R. E. Wang, W. Wang, B. Wu,
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A PSEUDOCODE

def inference(batch_images: nn.Tensor,
test_pairs: List[List, List],
model: nn.Module):

"""
Function to run inference with the fine-tuned embeddings.
Args:

batch_images (torch.Tensor): minibatch of images [n, h, w, c]
test_pairs (tuple): attribute-object pairs in the test

split [m, 2]
model (nn.Module): model with the fine-tuned embeddings

Returns:
torch.Tensor: cosine similarties of the minibatch images

and attribute-object pairs [n, m]
"""
prompt_template = "a photo of x x"
tokenized_prompt = tokenize(prompt_template)
tokenized_prompt = tokenized_prompt.repeat(len(test_pairs))
token_tensor = model.token_embedding(tokenized_prompt)

# fine-tuned embeddings
attr, obj = zip(*test_pairs)
attr_emb = model.soft_embedding(attr)
obj_emb = model.soft_embedding(obj)

# replace the "x x" in prompt template with fine-tuned embeddings
token_tensor = replace_emb(token_tensor, attr_emb, obj_emb)

# l2-normalized
text_rep = model.text_encoder(token_tensor)
image_rep = model.image_encoder(batch_images)

logits = (image_rep @ text_rep) * model.logit_scale.exp()

return logits

Figure 6: Torch-like pseudocode for inference with CSP.

Figure 6 shows the Torch-like pseudocode for inference with CSP. The function accepts the mini-
batch of images, test pairs, and the clip model with the fine-tuned embeddings and returns the cosine
similarities between the image representation and the text representation scaled by a constant scalar.

B HYPERPARAMETERS

Hyperparameter MIT-States UT-Zappos C-GQA

Learning rate 5e− 05 5e− 04 5e− 05
Batch size 128 128 128
Attribute dropout 0.3 0.2 0.3
Weight decay 1e− 05 1e− 05 5e− 05

Table 5: Hyperparameters for MIT-States, UT-Zappos, and C-GQA.

In our work, we find the best hyperparameters for training CSP via a grid search. We train the
ViT-B/32 model for 50 epochs and use the same best performing hyperparameters to train all our
models including ViT L/14. We run a grid search with the following hyperparameters: (1) learning
rate: {5e − 03, 5e − 04, 5e − 05}, (2) batch size: {128, 256}, (3) attribute dropout: {0.0, 0.1, 0.2,
0.3}, and (4) weight decay: {1e− 05, 5e− 05}. We choose the hyperparameters for a dataset based
best unseen accuracy on the validation split. We reduce the number of epochs to 20 with ViT L/14
as we found our models tend to converge earlier. Table 5 shows the hyperparameters used to train
our models on all the datasets.
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C RESULTS WITH STANDARD ERROR

We include the extended results with standard errors for the closed-world and the open-world set-
tings. Table 6 shows the results for the closed-world setting with the standard error. Table 7 shows
the results for the open-world setting with the standard error.

MIT-States UT-Zappos CGQA

Method S U H AUC S U H AUC S U H AUC

AoP[32] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
LE+ [30] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8
TMN[35] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1
SymNet[25] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1
CompCos [27] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 11.2 12.4 2.6
ProtoProp [39] - - - - 62.1 65.5 50.2 34.7 - - - -
CGE [31] 32.8 28.0 21.4 6.5 64.5 71.5 60.5 33.5 33.5 15.5 16.0 4.2
Co-CGE [28] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.5

CLIP [38] 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
COOP [50] 36.7 ± 0.1 49.2 ± 0.1 31.6 ± 0.1 15.1 ± 0.1 62.9 ± 0.5 62.3 ± 0.6 45.5 ± 1.3 31.3 ± 1.1 20.9 ± 0.2 25.9 ± 0.2 17.1 ± 0.1 4.4 ± 0.0

CSP 46.6 ± 0.1 49.9 ± 0.1 36.3 ± 0.1 19.4 ± 0.1 64.2 ± 0.7 66.2 ± 1.2 46.6 ± 1.2 33.0 ± 1.3 28.8 ± 0.1 26.8 ± 0.1 20.5 ± 0.1 6.2 ± 0.0

Table 6: Closed world results on MIT-States, UT-Zappos, and C-GQA. For COOP and CSP, we
report the average performance of the models on 5 random seeds with standard error. The results
for AoP, LE+, TMN, SymNet, CompCos, CGE, and Co-CGE are obtained from [28] and ProtoProp
from [39].

MIT-States UT-Zappos CGQA

Method S U H AUC S U H AUC S U H AUC

AoP[32] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - -
LE+ [30] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08
TMN[35] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -
SymNet[25] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CompCos [27] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CGE [31] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47
Co-CGECW [28] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.53
Co-CGEopen [28] 30.3 11.2 10.7 2.3 61.2 45.8 40.8 23.3 32.1 3.0 4.8 0.78

CLIP [38] 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.27
COOP [50] 36.8 ± 0.1 16.5 ± 0.1 16.1 ± 0.1 4.7 ± 0.0 61.8 ± 0.5 39.3 ± 1.3 35.6 ± 0.7 19.5 ± 0.6 20.9 ± 0.3 4.5 ± 0.2 5.7 ± 0.2 0.73 ± 0.0

CSP 46.3 ± 0.3 15.7 ± 0.1 17.4 ± 0.1 5.7 ± 0.0 64.1 ± 0.7 44.1 ± 0.3 38.9 ± 0.5 22.72 ± 0.4 28.7 ± 0.2 5.2 ± 0.1 6.9 ± 0.1 1.20 ± 0.0

Table 7: Open world results on MIT-States, UT-Zappos, and C-GQA. For COOP and CSP, we report
the average performance of the models on 5 random seeds with standard error. The results for AoP,
LE+, TMN, SymNet, CompCos, CGE, and Co-CGE are obtained from [28].

D MODEL ABLATION

Table 8 shows that CSP with a larger backbone improves the state-of-the-art reported by CSP in
Section 5.5. We note that CSP generally improves performance over CLIP. In particular, we see the
gains are highest with ViT backbones.

MIT-States UT-Zappos CGQA

Method Backbone S U H AUC S U H AUC S U H AUC

CLIP ResNet-50 21.1 34.4 18.4 5.6 6.4 43.6 6.4 1.4 6.1 17.1 6.1 0.7
CLIP ResNet-101 25.2 37.4 21.7 7.5 11.2 35.2 11.9 2.8 7.3 19.7 7.6 1.1
CLIP ViT B/32 25.1 39.1 21.4 7.5 9.6 42.4 10.0 2.4 7.3 22.1 7.4 1.2
CLIP ViT L/14 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4

CSP ResNet-50 35.0 ± 0.1 30.3 ± 0.1 23.0 ± 0.1 8.3 ± 0.1 21.8 ± 1.6 11.3 ± 1.7 10.2 ± 1.2 1.8 ± 0.3 17.9 ± 0.3 14.7 ± 0.2 10.2 ± 0.2 1.8 ± 0.0
CSP ResNet-101 38.9 ± 0.1 32.1 ± 0.2 25.2 ± 0.1 9.9 ± 0.1 42.2 ± 1.2 9.1 ± 1.3 10.0 ± 1.1 2.6 ± 0.5 17.7 ± 0.1 17.0 ± 0.2 12.0 ± 0.1 2.3 ± 0.0
CSP ViT B/32 36.4 ± 0.4 42.5 ± 0.2 28.6 ± 0.1 12.4 ± 0.1 57.1 ± 0.4 57.3 ± 0.6 39.3 ± 0.6 24.2 ± 0.4 30.1 ± 0.1 23.4 ± 0.2 19.4 ± 0.3 5.7 ± 0.1
CSP ViT L/14 46.6 ± 0.1 49.9 ± 0.1 36.3 ± 0.1 19.4 ± 0.1 64.2 ± 0.7 66.2 ± 1.2 46.6 ± 1.2 33.0 ± 1.3 28.8 ± 0.1 26.8 ± 0.1 20.5 ± 0.1 6.2 ± 0.0

Table 8: Closed world ablation results with respect to different backbone architectures of CLIP.
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E ADDITIONAL QUALITATIVE EXAMPLES

Figure 7: Additional qualitative comparison for image to text retrieval between CSP and CLIP on
CGQA. Selected samples with concepts correctly identified and top-5 retrieval results by CSP are
shown.

F DATASET CREATION

We create AAO-MIT-States from the MIT-States dataset [15]. Below we include details on the
annotation interface, annotators, and aggregation process for the annotations.

We annotate an additional attribute for the images paired with unseen classes in the test split of MIT-
States. The interface has three main components: (1) general instructions, (2) image with caption,
and (3) list of populated attributes. The general instructions provide the annotators with a detailed
description of the annotation task. To the right of the instructions is a randomly sampled image from
the test split of MIT-States. Additionally, we include a caption describing the image. For example,
suppose we select an image of a wet cat, we ask the users: “which attribute best describes the cat
in the image presented?”. Since we have a large number of attributes in the MIT-States dataset, we
need a way to reduce the list of attributes the user observes while annotating a single image. We
use CLIP to predict the attributes except for the original attribute in the image and choose the top-5
attributes as annotation candidates. We also include an option to select none of the above.
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Figure 8: Example annotation interface.

The dataset was annotated by two of the authors and two undergraduate research assistants. We
randomly sampled a total of 1200 images from test-split and asked the annotators to annotate from
the interface. We received annotations for 1089 instances where each image received exactly three
annotations. We aggregate examples for our dataset where all the three annotators agreed on the
same attribute other than “None of the above”. The total number of examples in the final annotated
dataset is 193. We have open-sourced the dataset in our code.
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